Why are my cows not getting pregnant in the fall?

Generally, a temperature-humidity index (THI) in excess of 72 is a threshold for heat stress in dairy cattle. Because the THI experience in Wisconsin over the past summer has exceeded historic norms, reproductive performance will be affected well into the fall months.

How Heat Stress Affects Reproduction

Heat stress affects reproductive performance in dairy cows by affecting both the oocyte two to three days before ovulation, by decreasing the fertilization rate, and by increasing early embryonic loss within the first week or so after fertilization before pregnancy status can be established. The mechanism by which heat stress occurs is an increase in the body temperature of the cow. Normal body temperature in cows is 101.5 degrees Fahrenheit, but rectal temperatures can exceed 107 degrees in extreme hot weather.

A Couple of Studies to Exemplify

In a study published by researchers in the Department of Dairy Science at UW-Madison in 2003, cows had a 41% greater risk of becoming pregnant during the fall of 2001 and a 71% greater risk of becoming pregnant during the winter of 2001/2002, compared with the summer of 2000. Overall, a 1°C increase in mean daily high temperature at TAI resulted in a 2-percentage-unit decrease in conception rate. During the summer of 2000, mean daily high temperatures did not exceed 85 degrees Fahrenheit — a far cry from the temperatures we have experienced in the summer of 2012. In another UW experiment, published in 2010, fertilization rates in lactating cows were 83% in a thermoneutral environment, but decreased to 37% under heat stressed conditions.

Why You are Not Getting Your Cows Pregnant in the Fall

It is important to understand that the effects of heat stress that we have experienced thus far during the summer of 2012 will linger into the fall when the heat of the summer has long passed. For example, during the period from April to July of 1999 (a relatively hot summer for Wisconsin), conception rates at the UW Arlington Dairy research herd steadily decreased from over 40% to around 15%. Conception rates then steadily increased starting in August of 1999, but did not exceed 40% again until November.

What We Can Do

Although we cannot completely avoid the negative effects of heat stress on reproduction, use of heat abatement strategies and timed AI breeding protocols like Ovsynch can help prepare the cow’s reproductive system for a successful fall breeding.

Source: Repro Money, University of Wisconsin Cooperative Extension.
Non-Enclosed Manure Storage Safety Tips

With the upcoming field work, there will be a lot of activity around manure storage and manure handling facilities. Regardless of the type of operation, take time to inform and discuss these safety tips with your family and employees. If you hire custom nutrient applicators, use this as a means to share your safety requirements with the business owners and their employees.

Injuries and fatalities occur in confined space manure storages that are enclosed, such as beneath animal quarters; or below-ground reception and pump out pits; and in non-enclosed earthen, synthetic or concrete lined manure storages. Non-enclosed manure storages are open to the atmosphere but may meet the definition of a confined space in terms of occupational safety and health based on storage design and employee exposure to hazards.

In the case of non-enclosed manure storage, hazards may include:

- A thick liquid and floating crust that make swimming, buoyancy, or even moving around very difficult.
- Steep and slippery slopes that can make getting out of manure storages difficult or impossible.
- An acceleration of hazardous gases (primarily methane, hydrogen sulfide, carbon dioxide, and ammonia) released from manure due to movement, agitation, removal, or addition of manure to storage.
- Localized layers of hazardous gases existing above manure surfaces, especially on hot, humid days with little to no breeze.
- Not having sufficient oxygen to breathe if a person is ‘treading’ in manure because of inability to get out.
- A slow response time for adequate emergency actions because of site isolation and remoteness.
- Potentially hazardous equipment in and around the manure storage.

Safety guidelines to follow:

- Make sure everyone near manure storage structures understands the hazards that exist, including symptoms and effects that the various manure gases have on their health.
- Explosive gas may settle in pockets where agitation or pumping is occurring. No smoking, open flames or sparks should be allowed.
- Make sure the non-enclosed manure storage has a fence installed around the perimeter and access gates are locked to keep unauthorized personnel from entering the area.
- Post warning signs including manure drowning hazard signs and “Danger Manure Storage” or “Danger Keep Out,” or “Danger Keep Away,” on all sides of non-enclosed manure storage. If possible, these signs should be located by gates.
- Keep bystanders and non-essential workers away from non-enclosed manure storage during or other accessible areas when pump out operations are in progress.
- Wear a safety harness with life-line attached to a safely located solid object or anchor at any time you enter the fenced in area of non-enclosed manure storage. If retrieval is needed, this equipment will improve the possibility of a successful rescue.
- Never work alone. The second person’s role is to summon help in an emergency and assist with rescue without entering the manure storage.
- Move slowly around unenclosed manure storages as the ground can sometimes be uneven and may cause a person to trip or stumble.
- Understand equipment being used and have emergency shut-down procedures prepared.
- If equipment malfunctions or maintenance is required during agitating or pumping of the manure, shut all equipment off and remove it from the manure storage before servicing or repairing.
- If you feel unsure or uncomfortable with what you are getting ready to do near the manure storage; wait a moment and reconsider the action, contact a supervisor or farm manager, and review the situation before proceeding.
- Be prepared to call 911 in case of an emergency. Being prepared includes providing specific directions to the site of the emergency, accurately describing the incident, and number of victims.

Adapted from Open Air Manure Storage Safety Tips. Cheryl A Skjolaas, Interim Director/Agricultural Safety Specialist, UW CTR for Agricultural Safety and Health; David Kammel, Extension Agriculture Building Design Specialist; Brian Holmes, Extension Farmstead Engineering Specialist; and Rebecca Larson, Extension Bio-Waste Specialist

Non-Enclosed Manure Storage should be assessed to determine employee exposure to safety and health hazards.

One potential hazard is someone falling into the storage and being engulfed in the manure slurry.

Agitation accelerates the release of hazardous gases. Employees should know the signs and symptoms of exposure to these gases.

OSHA requires warning signs to be posted in English but a recommended safety practice is to post in additional language based on your workforce.

Warning signs should be placed near gates and posted on all sides of the non-enclosed manure storage.
Dairy Hoof Health

While you are walking around it is not uncommon to get a rock in your shoe or to accidentally twist an ankle. We have the luxury of getting our feet quickly inspected to see if something is wrong with them or even switching shoes if they hurt our feet. Cows do not have that luxury and need to have their feet trimmed and maintained to keep them happy on their feet.

Cow hoof health is a very important part of any dairy operation. Cows that are lame have reduced milk production, reduced fertility, and overall stress on themselves and the producer. The stress from the summer is now being seen in the hooves because of the growth that happens. Lame cows also are more prone to injuring themselves in the stalls or even walking on cement or another hard surface. Significant research has been happening in this area of the farm recently and a good place to start on your farm is to do a locomotion scoring on your herd and then do a treatment plan.

Locomotion scoring is very easy to do while you are watching cows for heats or even bringing cows into the barn or milking parlor. The locomotion score card ranges from 1 to 5, with 1 being a completely normal cow and 5 being a severely lame cow. To score each cow you just need to ask yourself a series of questions. First, is the cow favoring a limb? If you answer yes, then she gets either a 4 or a 5. If she is not putting any weight on one leg she gets a 5 and if she does put some on it she gets a 4. If you do not notice her favoring any limb, you then ask if she stands with her back arched. If it is yes, then she gets a 3. If she stands normal, then you watch her walk. If she walks with an arched back she gets a 2 if not a 1. The following chart gives a set of descriptions to quickly analyze your herd.

Score

1 = Normal.
2 = Mildly lame; arches back slightly when walking; gait slightly abnormal.
3 = Moderately lame; stands with arched back, walks with arched back; gait has short strides with one or more legs.
4 = Lame; arched back standing and walking; one or more legs favored but can partially bear weight.
5 = Severely lame; arched back; refuses to bear weight on one limb; may refuse moving or have great difficulty moving from lying position.

Once you have done locomotion scoring on your herd, it is time to evaluate the results. On average 5-10% of your herd will score a 4 or 5 on the locomotion scorecard. If less than 5% of your herd scores that high you are doing a good job with lameness and hoof health on your farm. If it is more than 10%, you need to look at ways to improve your hoof health soon. This might involve starting a foot bath, doing a better job maintaining a foot bath, or getting a hoof trimmer in on a regular basis. There are many commercial products available for use as a foot bath and this is a discussion that you should have with your veterinarian or extension educator. If you are looking for a hoof trimmer, ask your neighbors and other producers who they have on their farm as well as if they are pleased with them.

Another way to use locomotion scoring is to identify cows that should be trimmed to hopefully prevent them from getting to a score of 4 or 5. Cows that score a 2 or 3 can be evaluated to alleviate a problem before it becomes a major problem.

It is becoming more of a common practice to trim all cows at dry off time and then problem ones when they arise. People are also looking at trimming heifers to encourage correct growth and take care of any possible problems before they calve and are productive. Doing the maintenance trimming and preventative trimming like this helps cows continue to be more productive during their lactation.

To keep your cows as productive as possible, you want to keep them as comfortable as possible. You are not as productive in your day-to-day activities if you have a broken or sore foot or hand. Your herd and bottom line will improve by being proactive and trying to prevent many of these possible problems.

Eric Sonnek, University of Minnesota
Feeding Strategies for 2012/2013

Recently, UW-Extension Dairy Nutritionist Dr. Randy Shaver shared with nutritionists tips for feeding dairy cattle this winter after our very hot, dry summer. With corn silage coming off the fields as we speak, it appears our feeding situation may not be as bad as we initially thought this summer. Fond du Lac county fields look variable, depending on where you are and when you planted the corn.

For farms that may be shy on feed inventory this winter, the following are strategies Dr. Shaver recommends as we move forward into this winter.

Assess your forage inventory, both on-hand and projected future harvests versus your projected animal needs. If you will be short on inventory, or will not have enough carry-over for the 2013/2014 feed year, consider planting winter rye for a spring harvest.

Stretch forage supplies as necessary. Conserve on feed. Trend toward a minimum forage diet by using a by-product fiber source such as whole cotton seed to replace a portion of the silage or providing roughage (hay or straw) in small amounts for effective neutral detergent fiber.

For older heifers restrict, or limit, feed by feeding a higher concentrate dense diet with less forage. Researchers at UW-Marshfield Research Station have successfully limit fed higher energy diets to older heifers. In limit feeding heifers, it is important to monitor growth, body condition and bunk space for heifers. Minimize feed refusals and waste for all management groups.

Utilize alternative forage supplies in appropriate groups. Alternative forage sources generally are lower in protein than good quality alfalfa and lower in energy than corn silage. Extend forage supplies by feeding alternative forages such as straw, sweet corn waste, or corn stover to medium and late lactation cows, older heifers and dry cows.

Consider starch alternatives with $8 per bushel corn. Thirty eight percent of the US corn crop is used to feed livestock. Forty percent is used to produce ethanol with the remaining 22% of US corn used for human consumption. Corn will not be going down in price anytime soon. Utilize other readily available feed ingredients which can be low-protein corn alternatives such as bakery, beet or citrus pulp, molasses, soybean hulls, whey, or wheat. Potatoes can also be an excellent source of starch, providing the same amount of starch and protein as corn. However, precautions need to be taken when feeding potatoes since there can be issues with storage conditions and if sprouts are seen, the potato can be toxic to cattle.

Consider plant protein soybean alternatives if protein will be compromised in the diet. Canola, corn gluten, cottonseed, linseed and sunflower meals as well as hi-protein distillers and feed grade urea are sources to replace soybean meal protein in the diet.

Displace both protein and energy, consider feed alternatives such as brewers and distillers grains. Providing one pound of either feed will replace the equivalent protein from ½ pound corn and ½ pound soybean meal (50:50 ratio). Other feed ingredients are corn gluten feed and whole cottonseed (60:40 ratio) and wheat mids (70:30 ratio).

Know your corn silage! Test the forage to determine its nutrient content and determine its best and most profitable use. Forage quality will likely be highly variable because of high crop variability. With this information, the best plan and the best supplementation strategy to maintain a profitable milk production and healthy cows can be developed.

Start culling less productive cows that can’t pay the bills. Trim cattle inventory as feed inventory, purchased feed costs, milk price and cash flow dictate. Available forage resources and dollars to purchase feed need to be allocated to those cows which make the most money per dollar invested.

Even though this summer’s weather conditions have created a challenge for some producers, take the opportunity to be proactive in seeking strategies to maximize your feed inventory and minimize negative impacts on milk production.
Field Crop News and Notes

Harvesting corn and soybean stalks – the K factor

There may be more than the usual harvesting of corn and soybean stalks for bedding and/or feed in 2012. Though justified in light of shortages left by the summer’s dry weather, there are associated costs. These are:

- The cost of harvesting, handling, and storing the crop residue.
- Reduced soil cover over winter and early spring, perhaps increasing the risk for erosion.
- Reduced organic matter that is returned to the field and eventually broken down by soil microbes.
- Reduced nutrients that will be incorporated back into the soil.

Though all of these costs are worthy of consideration, the removal of potassium (K) is the big ticket item from a nutrient removal standpoint. A large percentage of K in the crop is found in the plant tissue (especially stalks). Further, K is largely found floating around in solutions within and between plant cells. This makes it much more prone to loss from dying or dead plant tissue as it weathers in the field. For example, a recent Iowa State University research study showed that K concentration in soybean straw left in the field declined from about 1.3 percent at the time of grain harvest to 0.6 percent two months later (see figure below). Hence, the elapsed time between grain and straw harvest has a big impact on removed K. Based on analysis of harvested corn and soybean stover bales, an average of 21 to 23 lbs. of equivalent K₂O per dry matter ton are removed when crop stover is harvested; this is the equivalent value of about $12 per dry ton. By contrast, phosphorus removal value is only about $2-$3 per dry ton.

Figure 1. Potassium concentration in soybean (top) and corn (bottom) stover from physiological maturity until the following spring (Iowa State University).

Mike Rankin, Crops and Soils Agent

Change in road rules for passing farm equipment

A recent change in state statutes now makes it permissible to pass vehicles, including farm equipment, in a no-passing zone if the vehicle is traveling less than half the applicable speed limit. The new statute notes that this must be done “with care.”

Corn height variation

One of the oddities of this growing season is the significant number of corn fields with a small percentage of interspersed plants that are a foot or more taller than all of the other plants in the field. Not knowing the history of these fields, I presume this is the “refuge in a bag” effect; or in some cases maybe a blend was planted. Perhaps this phenomena was exacerbated by the dry conditions and associated hybrid response; time will tell. Nevertheless, it seems a better job of matching physical traits might be taken.

Lambsquarters explosion

An easy roadside observation for 2012 is the many soybean fields with less than desirable common lambsquarters control. A one-pass glyphosate weed control program left a lot to be desired under the stressful conditions of this past June and July. Those who opted for an early season residual herbicide treatment followed by a second pass with glyphosate achieved much better results.

Planting wheat after wheat

There have been a couple of questions this year regarding the prospect of planting wheat after wheat. UW research indicates that the yield of second year wheat (2003 column) was similar to wheat yields following corn for silage (see table below). Third (2004), fourth (2005), and fifth (2006) year continuous wheat yields were dramatically lower than the other rotational systems. Grain yield was greatest when wheat followed soybean.

UW-Extension agronomists suggest several management factors for second-year wheat. First, plant a different wheat variety in that second year that possesses a strong disease package. Under no circumstances should bin-run seed be considered for second year wheat. Also use a seed treatment in wheat following wheat and increase seeding rates to 1.8 to 2.0 million seeds per acre.

Winter wheat grain yield following winter wheat, soybean, or corn silage.

<table>
<thead>
<tr>
<th>Rotation</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter wheat grain yield</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>Wheat</td>
<td>56.3</td>
<td>47.0</td>
<td>41.8</td>
<td>45.0</td>
<td>47.5</td>
</tr>
<tr>
<td>Corn-Soybean-Wheat</td>
<td>66.3</td>
<td>51.0</td>
<td>71.8</td>
<td>74.0</td>
<td>65.8</td>
</tr>
<tr>
<td>Soybean-Corn (silage)-Wheat</td>
<td>57.7</td>
<td>51.0</td>
<td>62.0</td>
<td>69.9</td>
<td>60.2</td>
</tr>
</tbody>
</table>

1 2003 marked the second year of the continuous wheat rotation treatment
Well Water: Have You Sampled It Recently?

By Diana Hammer Tscheschlok, Community Development & Natural Resources Educator

If you don’t remember the last time you sampled your water, it’s time to do it again. UW-Extension recommends wells be sampled each year at a different time of the year (every 15 months or so.) This lets you know what seasonal variations there may be in the quality, and also tells you what is normal for your well and what is not.

Even dairy farms which have well water sampled by the dairy should sample the water routinely. Dairies only check for bacteria, and in Fond du Lac County there are other contaminants important to know about for health reasons.

Nitrates are naturally occurring at low levels. Higher levels of nitrates can be caused by leaky septic systems, over-applied lawn and garden fertilizers, and land-spreading. The EPA recommends not drinking water with nitrate levels higher than 10 mg/L. High nitrates can cause serious health concerns (“Blue Baby Syndrome”) for infants, young children, and pregnant women. Boiling water with high nitrates will concentrate the nitrates and make the elevated level worse.

Arsenic is a naturally-occurring element we are finding more often in Fond du Lac County wells. Wells should be sampled at least once for arsenic, and then every few years if it is found in any quantity. Arsenic in drinking water increases the risk of cancer, circulatory and skin disorders.

The Fond du Lac County Health Department (160 S. Macy, 920/929-3085) can test for coliform bacteria ($19) and nitrates ($16). Wells used by pregnant women and infants can be checked at no cost. The UW-Extension lab in Stevens Point can do more extensive testing (Homeowner’s Package - $49, Metals Package - $42, and pesticide screen - $27) and accepts samples by mail. (See http://fonddulac.uwex.edu/well-water-sampling/ or call our office (920-929-3173) for more information on these programs, on testing for arsenic, and township-level well water quality information.)

When you are sampling well water on your farm, inspect the well at the same time. Is the cap on and tightly fitted? Clear any bushes or tall plants nearby (pests love the sheltered, dark, wet areas). Well casing should be at least 12 inches above grade on relatively flat ground (there should not be water pooling around it when it rains).

Do you have wells that are no longer in use? Unused wells pose a health hazard by allowing contaminants a direct route down to the water you are drinking. It is a Fond du Lac County ordinance that unused wells be abandoned (by a well driller). Land Conservation Department periodically has cost-share dollars available to help cover the cost of this procedure. Contact them before any work is done on the well.

Lastly, do you have wells that serve the families of your workers or other tenants? Have those been sampled recently? I speak Spanish and would be happy to talk more with you and your workers and families about water quality and sampling.

Feel free to contact Diana Hammer Tscheschlok, Community Development and Natural Resources Educator at the UW-Extension office in Fond du Lac county with any questions. Much more information is available on our website http://fonddulac.uwex.edu/category/community-development/water-quality/ also. And now I lift my glass of water, to your health!

FdL County Holstein Association Scholarship

A $500 scholarship will be awarded to a Fond du Lac Holstein member pursuing a degree in an agriculture-related field. The application has changed a little this year to focus more on Fond du Lac county activities. This scholarship application is due November 1st and the application is available at the Fond du Lac County UW-Extension Office or on line at: http://fyi.uwex.edu/fdldairyyouth/educational-opportunities/

FdL County Holstein Association Herd Builder Program

This year the Fond du Lac County Holstein Association is offering $1000 to any Fond du Lac County 4-H or FFA member to purchase a registered calf. The money is available interest free. When the heifer is 24 months old, or has calved, the $1000 is to be paid back.

Applications are available at the Fond du Lac County UW-Extension Office and are due December 31st.
2012 Tillage Day

Date & Time: Thursday, October 25, 2012
10:00 am—3:00 pm

Location: Split Rail Acres, LLC
The Mentinks
W4554 Cty Rd V
Waldo, WI 53093

3/4 mile east of Waldo on Cty Rd V

Participating Implement Dealers

Farmers' Implement—Allenton
Gellings Implement—Eden
Gibbsville Implement—Waldo
Miller & Boeldt—Plymouth
Riesterer & Schnell—Chilton
Waldo Implement—Waldo

Sponsored by:
Sheboygan County Forage Council
UW-Extension Sheboygan, Ozaukee, Washington, Manitowoc & Fond du Lac Counties

For more information contact:
Mike Ballweg
UW-Extension Crops & Soils Agent/Sheboygan County
E-mail: Michael.Ballweg@ces.uwex.edu

Reservations requested by October 22, 2012.
Call (920) 459-5904
Farmer to Farmer Website

Links Buyers and Sellers

UW-Extension’s Farmer to Farmer Corn and Forage website is probably best thought of as an electronic neighborhood bulletin board which allows local farmers to get in touch with one another.

The website facilitates the local marketing of feed commodities where livestock producers in need of high moisture corn, corn silage, hay or straw can easily make contact with sellers that have feed commodities for sale. The site developed and supported by UW-Extension can be found at http://farmertofarmer.uwex.edu.

The Farmer to Farmer Corn and Forage List is free of charge for both buyers and sellers. Users can search for, or list for sale, high moisture corn, corn grain, haylage, hay or straw. Buyers can search for farmers in just one Wisconsin county or in any number of counties at once.

This site has been an excellent way for buyers and sellers to get in touch locally. Neighbors, often within short distances, have been able to buy and sell as a result of the website.

Buyers can locate feed for their animals easily. Sellers can find buyers and save money on grain drying and marketing costs if they choose to sell their corn crop as high moisture corn or silage. All transactions and negotiations are handled directly between buyers and sellers.

Buyers and sellers can access the website immediately by going to http://farmertofarmer.uwex.edu.

People who wish to use this service, but do not have access to the Internet, can get access and assistance at the UW-Extension Fond du Lac County at 920-929-3171.

FeedVal2012

FeedVal 2012 is a decision support tool especially designed to help dairy farm producers, dairy farm nutritionists, and dairy farm consultants make economical optimal decisions for purchasing and using feed ingredients for dairy farm feed rations.

It evaluates the actual value of feed ingredients and the relation of this value with its market value. Feed products can be included in one evaluation and not in another, if only certain feed products are available to the specific farm or business. FeedVal 2012 calculates the predicted value and the actual price as a percentage of the predicted value of all ingredients available in a user-defined analysis. The tool can evaluate 46 ingredients and has spots for five extra feed products. It can evaluate based on up to 13 nutrients like crude protein, Neutral Detergent Fiber (NDF), Net energy Lactation, Calcium and phosphorus and more. The predicted value of a feed ingredient is the aggregation of the value of all nutrients contained in the feed. FeedVal 2012 will note those ingredients that are overpriced and those that are underpriced.

This pricing is given in percents and highlighted in red for too expensive or green for prices below 100 percent. FeedVal 2012 is an online tool openly available at the Wisconsin Dairy Management Website, http://DairyMGT.info Tools: FeedVal2012.
Gearing Calves Up for ‘Ole Man Winter

Even though it is only mid-September, it’s the start of "Sweatshirt Weather" and the general time to start developing and implementing your winter calf management program.

As a rule of thumb, if you need to wear a sweatshirt to do chores, temperatures are cool enough to turn your focus on a winter calf management program. Temperatures are now low enough for calves to become cold stressed. The thermal neutral zone (comfort zone) for newborn calves is 50-78°F while one-month old calves’ thermal neutral zone is 32-78°F. Once the temperature reaches the below the lower critical temperature of 32°F for our one-month old calves or 50°F for our newborn calves, the energy they consume is now used for maintenance making less available for growth and immune function.

Is it really that bad? See if from the calf’s perceptive. If a 100 pound calf has only 1.5 pounds of fat reserves at birth, this fat reserve can easily be depleted within 18 hours under certain conditions. For every 1°F drop below the lower critical temperature, maintenance requirements increase 1%. If increased energy is not provided, calves have the potential to become sick and/or die.

Based on a NAHMS USDA study, only 33% of dairy producers change calf-feeding practices in cold weather. Failure to minimize the effects of cold stress results in depressed immune function, increased risk of sickness, poor response to treatment, decreased growth performance and possible death.

A calf can stand a good deal of cold weather if it is dry and protected from drafts. To minimize cold stress one area of focus is the calf’s environment. This environment includes the calf’s resting space, feeding area, and walking surface. As temperatures begin to drop in the fall, the following are cold weather comfort indicators:

- A dry, clean place to lie with plenty of clean, dry bedding. Based on UW research, calves tend to lay down nearly 50% of the time during the day and 100% of the time at night. Wet bedding causes the hair coat of the calf to “clump” and lose insulation value. Ideal bedding provides a good base to soak up liquid, provide a “buffer” from the cold ground, provide insulation and allow the calf to nestle. Dairy Calf & Heifer Association (DHCA) gold standards recommend 6 to 12” of bedding per calf or 20-25 pounds of bedding per calf to provide a good base. To maintain the base, 2 to 3 pounds of bedding per day should be added to the pen or hutch. Also, it’s the amount of bedding used that is more important than the specific material used.

- Plenty of fresh air with minimal draft. UW-School of Veterinary Medicine research shows as temperatures fall, pneumonia incidences rise. Pneumonia can be attributed to cold stress and calves not meeting their energy need to support their immune systems. Also, pneumonia can be contributed to by the air quality as we close up barns during the winter. DCHA Gold Standard II indicates indoor ventilation should be 50 cfm during mild weather and 15 cfm during cold weather to provide good air quality while minimizing cold air drafts.

- Provide calf blankets to help keep calves warm. North Dakota State University research shows calves wearing calf blankets during cold weather had 1.4 pounds daily gain from birth to 4 weeks of age as compared to 1.2 pounds of gain by calves with no blanket. Blankets should fit properly and allow room for growth. Blankets should be dry. Monitor blanket usage to minimize sweating or over heating which would affect the insulation value of the calf’s hair coat.

- Minimum frost or condensation during very cold weather to minimize bacterial growth in pens and calving environment.

As you plan for this winter’s calf management program, don’t forget about the calf’s environment and focus on comfort and cleanliness to help your calf thrive the winter season!
Return Service Requested

Periodically requests are made for our mailing lists. If you do not want your name and address released, please notify our office and we will make sure it is not released. You can notify our office either in writing or by calling 929-3171, 324-2879, or 748-7565.

UW-Extension provides equal opportunities in employment & programming, including Title IX

Calendar of Events

September
25 Fond du Lac County Holstein Breeders “Holstein Classic”, Great Northern, Fond du Lac
30 Junior Holstein Meeting, Kurt & Sarah Loehr, 1:00 p.m.

October
1 WHA Junior Award forms due in the WHA Office
2-6 World Dairy Expo, Madison
25 Tillage Day, Split Rail Acres, W4554 Co. Rd. V, Waldo (3/4 mi east of Waldo on CR V) 10 a.m.-3 p.m.

November
1 Fond du Lac County Holstein Association Scholarship Application Due to UW-Extension Office.
8 Fdl Area Agribusiness Council Annual Meeting, Holiday Inn, Fond du Lac, 7:30 p.m.
12 Pest Management Update Meeting, UW-Fond du Lac, Rm. 113-114 University Center, 10 a.m.-3 p.m.

December
1 Fond du Lac County Holstein Association Herd Builder Application due to UW-Extension Office.
3 Area Soil Fertility and Nutrient Management Mtg., Dodge Co. Admin. Bldg., Juneau, 10 a.m.-3 p.m.
5 Area Soil Fertility and Nutrient Management Mtg., Millhome Supper Club, Kiel, 10 a.m.-3 p.m.
10 Fond du Lac County Holstein Association Annual Meeting, Knights of Columbus, Registration 7:00 p.m.
11 SNAP+ 101 Nutrient Management Plan Training, UW-Fdl, Rm. 205 Admin/Extension Bldg., 10 a.m.-2 p.m.
12 Advanced SNAP+ Nutrient Management Plan Training, UW-Fdl, Rm. 205 Admin/Ext Bldg., 10 a.m.-12 p.m.
12 Area Soybean Conference, Royal Ridges, Ripon, 10 a.m.-3 p.m.
14 Dairy Forage Day, UW-Fond du Lac, Rm. 113-114 University Center, 11 a.m.-3 p.m. (tentative)